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Modeling chaotic quantum systems by tridiagonal random matrices
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The spectral properties of “chaotic quantum systems” are modeled using tridiagonal random
matrices. Unlike the Gaussian-orthogonal-ensemble (GOE) method, both the smooth and fluctuating
parts of the spectral properties can be modeled simultaneously. We model the recent experiment
by Graf et al. [Phys. Rev. Lett. 69, 1296 (1992)] as an example. This approach also provides an
approximate construction of a GOE-type spectrum without any need for unfolding. By changing one
control variable, one can bring the model from obeying é-function level-spacing statistics, to being

GOE-like or to being Poisson-like.
PACS number(s): 05.45.+b, 05.40.+j

Random-matrix theory has been very successful in de-
scribing the spectral properties of complicated systems
[1,2]. Perhaps the best known example of this theory is
the Gaussian orthogonal ensemble (GOE) which is used
to model complicated systems with time-reversal invari-
ance. Due to the intense interest in studying quantum
integrability [3-7], GOE has attracted much attention in
recent years. It is well known that the smooth part of
the level density from GOE is a Wigner semicircle, which
in general is not the same as for the system one is mod-
eling. In order to study spectral fluctuations, the energy
levels must be unfolded so that the local average density
of states of the resulting spectrum is unity.

The primary objective of this work is to generate a
GOE-type spectrum with a smooth level density of unity.
Our intent is to format the problem as simply as possible,
hence the choice of tridiagonal random matrices. Devia-
tion from full size random matrices can be traced back to
the 1950s when Dyson [8], Wigner [9], and Engleman [10]
J

gl[Esm(2) - Esm(l)]7
gnl[Esm(n + 1) — Esm(n — 1)]/2,
gN[Esm(N) - Esm(N - 1)]»

(Hi)npn =dn =

(H)nnt+1 = (Hi)nt1i,n =Cn = IN+4n[Bsm(n + 1) — Egm(n)],

(H1):; =0, [|i—j]>1,

where (g;,¢ = 1,...,2N — 1) is a sequence of random
numbers of normal Gaussian distribution. This definition
ensures that the matrix elements of H; are of the order
of AEg,,. Without the H; term, the eigenvalues of H are
just Esm(n). When we turn H; on, keeping A small, AH;
can be viewed as a perturbation. Up to the second order,
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studied special cases of bordered random matrices. By
generalizing the approach to produce a smooth uniform
density spectrum, a spectrum of known smooth density
can be generated. This allows us to model not only quan-
tum level fluctuations, but also the smooth level den-
sity for certain given systems. Another advantage is that
tridiagonal matrices require much less computation than
the usual GOE approach with full matrices.

Consider a real symmetric Hamiltonian represented by
an N x N matrix

H = Hy + \H; (1)
where Hy is diagonal, and
(Ho)nn = Esm(n), n=1,...,N (2)

is a monotonic increasing smooth function. H; is a tridi-
agonal real symmetric matrix whose elements are defined
as

n=1
l1<n< N
n=N

n=1,...,N—1, (3)

E,= Esm(n) +dn + Pn — DPnt1,
2 @
Cn—1

Esm(n) — Esm(n — 1) +dp — dpn_1

This perturbation introduces random fluctuations into

Dn =
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the spectrum, but retains the global spectral properties
as determined by Hy. To see this, let us take a local
average of E, around n. It is not difficult to see that

d, =0 and Dy, = Dnt1, thus

sm(n) . (5)

In other words, the smooth level density is determined
by Esm(n). Since the off-diagonal matrix elements act as
a source for level repulsion, one is unlikely to find degen-
erate levels. This is the underlying reason for finding a
GOE-like spectrum.

In the simplest case, we can take Eg, = n. With this
particular choice, the smooth level density is unity, and
there is no need for unfolding the spectrum. When A = 0,
we have E,, = n, and the nearest-level spacing x obeys
é-function statistics: P(z) = §(xz — 1). This result holds
for any spectrum in which E,, is a smooth function of n,
as is often seen in one-dimensional systems. At the other
extreme, one may set A to be infinite, effectively setting
H = H; up to a scale factor. The disappearance of Hy
eliminates the dominant term which defined the smooth
level density, thus the resulting spectrum no longer has
unit density of states on average. In this case, unfolding
is needed. Our numerical result shows that the eigenval-
ues of H; obey Poisson level statistics. This conclusion
is supported by both the nearest-level spacing and the
spectral rigidity Ag statistics. In Figs. 1 and 2 we plot
these two quantities for 1060 levels, and compare with the
analytical result for Poisson level statistics. These two
limits are both generic characteristics of integrable sys-
tems, so we can say that by changing A, we have brought
our model from one type of integrable system to another.
This has some similarity to changing a system from one
dynamical symmetry to another [11,12]. By a similar
argument, we expect to see “chaotic” level statistics be-
tween the two limits. Indeed, we found that at A = 0.7,
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FIG. 1. Nearest-level spacing distribution for H = H; as

compared to Poisson level statistics P(z) = exp(—z). N =
1060.
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FIG. 2. The Ags level statistics for H = H;, N = 1060.
Soild line: Result for Poisson level statistics; dashed line:
GOE result.

the spectrum of H is very close to GOE. The nearest-level
spacing fits better while the Aj statistic staturates below
the GOE value for large L, a phenomenon predicted by
Berry [4] for systems with few degrees of freedom. We
will not provide a separate set of plots for the GOE-like
statistics obtained for Eg, = n, because the result is
very similar to the example which we will show for the
stadium billiard problem.

So far we have demonstrated a very simple way of con-
structing a GOE-like spectrum with the local average
level-spacing one; this type of spectrum is useful because
it contains pure quantum fluctuation properties. It is
independent of any “unfolding procedure” used to sepa-
rate the smooth part of the spectrum from the fluctuating
part. This type of spectrum has been used as input to
one-dimensional problems [13, 14].

Very recently, Graf et al. studied experimentally a two-
dimensional quantum stadium billard problem by means
of a superconducting microwave resonator of high Q value
[15]. They measured 1060 energy levels and analyzed
both the fluctuating part and the smooth part of the
spectrum. Here we are going to use our random tridiago-
nal matrix to model both parts of the spectrum. Specif-
ically, we wish to find Eg, and A such that both aspects
of the observed spectrum can be reproduced without ac-
tual knowledge of the experimental data. According to
Egs. (1) and (3) and Ref. [15], the number of cumulative

levels up to energy E is (taking -2% =1)

n(E) = 4£E - L VE
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FIG. 3. Nearest-level spacing distribution of 1060 levels

for A = 0.7. Histogram: our result; solid smooth curve: Brody
distribution best fit to experiment data; dashed line: GOE
result.

where A is the area, P the perimeter, r the radius of the
curved wall of the stadium, and a the length of the rect-
angular part of the stadium. This function determines
the smooth part of the spectrum and that coming from
the periodic classical orbits. By inverting it at integer
values of n, we have the function Egn(n) which deter-
mines Hy. From the previous discussion, we see that
upon diagonalizing H, this smooth part of the spectrum
will be reproduced. We indeed see this in our resulting
spectrum.

Once we know the smooth part of the spectrum, the
unfolding procedure is a trivial task. With the unfolded
spectrum, we can study the level fluctuation and com-
pare with the analysis provided in Ref. [15]. In that
paper, the nearest-level spacing distribution is fitted us-
ing a Brody distribution [1] P(z) = c;z* exp(—coz¥ ™)
with w = 0.82. Normalization and average level spac-
ing require that ¢; = 1.47, c; = 0.81. We found that
at A = 0.7, our spectrum reproduces their fit quite well.
Even more remarkable is the result for Az. With the
same A value, our model reproduces the experimental
data very well. Comparing with GOE, we reproduce sat-
uration of Az naturally [4]. These results are plotted in
Figs. 3 and 4. Thus with our model, we were able to
reproduce three aspects of the experimental data: the
smooth level density, the nearest-level spacing, and the
A3 spectrum rigidity. The ability to reproduce A3 satu-
ration lies in the fact that the effect of AH; on the spec-
trum is local in the perturbation approximation; thus it
is less effective in altering the long-range correlation of
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FIG. 4. The Aj level statistics for 1060 levels when \ =
0.7. Solid curve: GOE result; crosses: our results; diamonds:
a few experimental points taken from Fig. 4 of Ref. [15].

the spectrum determined by Hp.

It is worthwhile to discuss the physical insight brought
by Eq. (1). The separation of the whole model Hamil-
tonian into a major part and a fluctuation term is anal-
ogous to a similar separation of the spectrum. Hy gives
an approximate semiclassical solution, while AH; intro-
duces fluctuations. The model suggests that there might
exist a basis in which the semiclassical approximation to
a system is diagonal, and in this basis, the fluctuation as-
pect can be taken into account in a simple way. Research
is under way to study the current model in a semiclassi-
cal approach and a possible relationship with Gutzwiller
periodic orbital theory [16].

We have demonstrated a tridiagonal random matrix
approach to modeling “chaotic quantum systems.” By
comparison with experiment, our approach is better than
the traditional GOE approach, at least for the two-
dimensional billiard problem. This approach has also
been tested for the case where Egy,(n) is not primarily
linear, and yields similar results. It was also noticed that
matrices with additional nonzero off-diagonal bands do
not change the result significantly as long as the Egp,
remains dominant.
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